img(height="1" width="1" style="display:none" src="https://www.facebook.com/tr?id=2939831959404383&ev=PageView&noscript=1")

Shell Lace Structure: An accidental piece of biomimicry

Words:
Tonkin Liu
A design challenge for the Shell Lace Structure.
A design challenge for the Shell Lace Structure.

Principles learned from
 seashells – such as curvature, corrugation, and distortion – all lock in strength and stiffness, allowing plate thickness to be reduced to a minimum

Hammered into a thin sheet, 31g of gold can cover an area as large as 16m2. What if architects designed just so with every material, as if it were extremely valuable and scarce? Nature always does. It creates lightweight structures of astonishing diversity and ­beauty – seashells for instance. 

Before we discovered the Shell Lace Structure technique, our projects all led to a different material and technical exploration through our design process, Asking Looking Playing Making. When exploring, with Ed Clark and Alex Reddihough at Arup, a cost-effective way to make strong three-dimensional forms for an RIBA competition for seaside pavilions, we realised we’d invented something by chance. Subsequent projects using the Shell Lace Structure have united story-telling and technical experiments in a single cohesive process. The discovery has given one aspect of our work a new focus, taking on a specifically biomimetic approach. 

Shell Lace Structure is a single surface structural technique inspired by the evolution of seashells and the art of tailoring. The discovery was made possible through computer-aided design and fabrication. Experiments made the most of the available technology but they also used an intuitive hands-on approach, using paper and plasticine study models, establishing a new notion of craft through tailoring and assembling of laser-cut plates. Shell Lace Structure generates ultra-light, single-surface structures. Principles learned from seashells – such as curvature, corrugation, and distortion – all lock in strength and stiffness, allowing plate thickness to be reduced to a minimum. With these principles, the tailored and joined thin cut sheets make incredibly strong, thin structures. Perforations, removing material in areas of low stress, further reduce their deadweight and help to articulate the thinness of the sheets, catching light on the ­surface, adding dynamism and delicacy. 

In practice, Shell Lace Structure has been used to design 10 projects in three structural typologies – vault, beam and column. These range from a shelter built of 3mm thick ­stainless steel spanning 7m, to a competition entry for a ferry terminal with 18m tall columns made in 10mm thick steel plates, and a bridge proposal for China spanning 75m using 16mm thick steel plates. 

Work undertaken through the four years of research is available on our website as an open source resource and could be useful to practising architects, teachers and students. The technique can be developed and modified in numerous ways with different flexible sheet materials, while the work can be seen as a vehicle for the realignment of a practice into an area that brings together a multitude of interests. Shell Lace Structure has made us look beyond the world of architecture both at the source of inspiration and in to an exciting field of collaboration. As teachers we have enjoyed the hands-on research, in the same way we would encourage our students to conduct the exploration. As practitioners we have gained a renewed sense of purpose and been encouraged to develop new skills and tools. The research has also brought us in contact with many like-minded people with a similar interest in structure and nature. 

Our research has been disseminated through lectures, seminars and hands-on workshops in Japan, Taiwan and Britain. The work has appeared in publications and a number of exhibitions and has also brought the practice awards. We are working toward an exhibition and catalogue of the Shell Lace Structure projects, and have just begun conducting an MArch unit at the University of Westminster specifically to expand the evolution of the Shell Lace Structure process. 

Shell Lace Structure research has made the most of the digital tools that have become available in the last decade. Though they are sometimes blamed for wilfully complex ­architecture that does not respond to simple laws of physics and is costly to fabricate, they offer huge potential in design. If we liken the iterative design process, made possible by the speed and power of these tools, to the constant evolutionary process in nature, perhaps we can come closer to designing pure structures in the lightest, most optimum form. 

Our journey has taught us to follow our instincts, looking forward as well as back. Digital and traditional methods need not be contradictory, but can reshape each other. Research is very important in creating space and time to experiment with seemingly unlikely partners, that of tailoring and seashells and of digital and analogue tools. The evolving holistic approach has allowed a great deal of architectural expression, as well as responsiveness to site, structural, climatic, and social parameters. Beauty in nature is closely aligned to effectiveness and economy, to use the least material to make the most ­efficient form, fulfilling the desired fitness for purpose. 

Shell Lace Structure may just be one place on this journey; aided by increasingly sophisticated tools we hope it will lead to a marriage of economy with delight. 


Shell Lace Structure was commended in the President’s Awards for Research


 

Latest

Peter Apps intertwines humanity, horror and technical detail in a harrowing but compelling report of the Grenfell fire, the Inquiry and people who suffered

Harrowing but compelling report mixes humanity, horror and technical detail

UK start-up’s OSTO, made from waste including plastics destined for incineration, replaces lightweight, high carbon aggregates

Durham-based Low Carbon Materials’ OSTO gets shot at eco prize

Reducing carbon emissions and tackling climate change are central to Sarah Wigglesworth Architects, and the practice’s most valued collaborators are part of that drive

Who helps with projects to mitigate climate change

We followed the triumphs and challenges of deep retrofit – the process of making a building sustainable in conversion and use – at the Cambridge Institute for Sustainability Leadership’s new base, through the RIBA Plan of Work. Read on for Stages 0 to 5 and an assessment of the finished building

How has the Cambridge Institute for Sustainability Leadership’s office refurbishment turned out?

Student housing by Henley Halebrown and a masterplan for Pudding Mill Lane have both been approved by the London Legacy Development Corporation

Student housing by Henley Halebrown and a masterplan for Pudding Mill Lane have both been approved