img(height="1" width="1" style="display:none" src="https://www.facebook.com/tr?id=2939831959404383&ev=PageView&noscript=1")

Solar eclipse: Oxford firm develops world’s most efficient PV cell

Words:
Stephen Cousins

Oxford PV's perovskite-silicon cell can convert more than 29% of solar energy into electricity and, with mass production set to start next year, could play a critical role in combating climate change

Coating perovskite on silicon cells leads to jumps in solar cell performance far in excess of current best-case outputs.
Coating perovskite on silicon cells leads to jumps in solar cell performance far in excess of current best-case outputs. Credit: Oxford PV

An Oxford University spin-off company has developed the world’s most efficient solar cell, and plans to begin mass production at its European factory next year.

Oxford PV’s perovskite-silicon tandem cell was independently proven to convert 29.52 per cent of solar energy into electricity, a new world record and well above the current practical maximum of 26 per cent achievable using regular solar cells.

The power boost was made possible by coating ordinary silicon with a thin film of perovskite, a synthetic ‘wonder’ material that makes better use of photons across the solar spectrum. According to the company, Just 35kg of perovskite can generate the same power as 7 tonnes of silicon.

A 125MW-capacity production line in Berlin is under construction and, from 2022, will produce solar cells for residential rooftop panels, using manufacturing equipment from Meyer Burger in Switzerland.

Higher cell efficiencies are already being targeted and Oxford PV has a roadmap to achieve at least 33 per cent efficiency in the short-to-medium term, and potentially 39 per cent in the longer-term.

Oxford PV's chief technology officer Chris Case told RIBAJ: 'The 29.5 per cent achieved using our tandem solar cell is more efficient than silicon alone will ever get in production; it's more efficient than the most efficient solar cell material in the world, gallium arsenide. What's more, it represents just the beginning of a journey and we expect to extend performance well into the 30s.'

 

  • Perovskite-silicon panel performance is expected to be up to 20% better than existing panels
    Perovskite-silicon panel performance is expected to be up to 20% better than existing panels Credit: Oxford PV
  • Currently based in Oxford, production is moving to Berlin, using Swiss Meyer Burger solar panels.
    Currently based in Oxford, production is moving to Berlin, using Swiss Meyer Burger solar panels. Credit: Oxford PV
12

More efficient and affordable renewable technologies are critical in the fight against climate change, and solar is predicted to provide 50 per cent of global electricity generation by 2050.

The key benefits of using perovskite are its light-converting efficiency, low cost and relative abundance as a material. According to Case, there’s enough in the Earth's crust to deliver terawatt-scale PV to transform the world’s carbon footprint.

Oxford PV had originally intended to use perovskite in a transparent Building Integrated PV (BIPV) but despite significant research and development, the work was suspended due to challenges around market demand for the tinted glass and scaling up for manufacture.

Instead, the company decided to switch to augmenting regular silicon cells with perovskite to boost efficiency.

'After 65 years, silicon has hit a wall that can't be climbed using the same technology,' says Case. 'But perovskite is particularly good at converting photons to electricity in the [blue] colour range, and the silicon solar cell we developed is particularly good at taking advantage of perovskite. There's innovation in the architecture of the solar cell and in the materials engineering.'

Homeowners may end up paying more for the panels, due to the extra engineering involved, says Case, but a typical rooftop will generate 20 per cent more power from the same number of cells resulting in longer-term savings on energy bills.

Since rooftops have a fixed size, the system is expected to attract customers keen to maximise output for their available surface area. 'If your dream is to get more power, then you need to have a technology like ours,' Case concludes.

Latest

The debut project by craft-led architect Grafted celebrates the original detailing of a house in Norwich’s Golden Triangle through concrete panels which the practice cast itself

Grafted’s debut project celebrates the original detailing of a house in Norwich’s Golden Triangle

Building-scale installation validates use of reclaimed timber for structural glulam and cross-laminated timber frame construction

Building-scale installation from waste points way to circular economy

Rescue and restore a William Adam-designed villa, create an outdoor installation ‘filled with play, wonder and delight’, imagine a multifunctional exclusive/inclusive complex that serves client and community - some of the latest architecture contracts and competitions from across the industry

Latest: Bid for phase 1 rescue of Scotland’s first Palladian country house

A journey to Turkey for a summer wedding prompts the Purcell architect to consider aspects of place and time

Joining the dots to make sense of disruption

Emulating the patterns of natural light and our deeply embedded responses to it are central to lighting design, said experts at the RIBAJ/Occhio lighting event

Light and atmosphere are the key to making a magical place