img(height="1" width="1" style="display:none" src="https://www.facebook.com/tr?id=2939831959404383&ev=PageView&noscript=1")

Mixed-use timber tower makes a 74m high city beacon

Words:
Jan-Carlos Kucharek

How did Swedish practice White Arkitekter create a 75m high all-timber tower with a mostly glazed facade without using cross-bracing?

At 75m, Sara Cultural Centre is the world’s second tallest timber tower after the 85.4m Mjøstårnet tower in Brumunddal, Norway. Two more floors could have been added with no structural change.
At 75m, Sara Cultural Centre is the world’s second tallest timber tower after the 85.4m Mjøstårnet tower in Brumunddal, Norway. Two more floors could have been added with no structural change. Credit: Patrick Degerman

White Arkitekter’s Sara Cultural Centre at Skellefteå on Sweden’s north-eastern coast is a 30,000m² complex of theatre, library and art gallery on a four-storey plinth which is topped by a 16-storey hotel tower that acts as a beacon for the city’s catchment of 70,000. Acknowledging the town’s links with the timber industry, the 74m high complex, including tower, is built of locally-sourced wood, to make one of the world’s tallest all-timber structures.

Working with project engineer Florian Kosche, the firm adopted a dual approach to construction, say project architects Robert Schmitz and Oskar Norelius, pushing innovation in offsite engineered timber technology. The first was prefabricated glulam for the plinth holding the cultural facilities – which would mean delivering modules as big as 27m by 3m to site; and secondly, a cross-laminated timber (CLT), volumetric route for the hotel tower, plus timber cores, which accelerated construction and aided servicing logistics.

Although many taller timber buildings rely on cross-braced glulam for structural stability, the firm still wanted a predominantly glazed aesthetic. It chose a volumetric solution using CLT, which could better handle shear loads without cross-bracing. Putting the centre on the plinth also helped: with massive hybrid timber and steel trusses creating the necessary spans, it spread the tower load over a  bigger footprint.

  • Timber trusses are hybridised to reduce depth by introducing steel in tension.They also help distribute the tower’s loading.
    Timber trusses are hybridised to reduce depth by introducing steel in tension.They also help distribute the tower’s loading. Credit: Patrick Degerman
  • Throughout the complex, including the hotel, internal finishes have been left deliberately minimal.
    Throughout the complex, including the hotel, internal finishes have been left deliberately minimal. Credit: Patrick Degerman
12

The tower’s stacked pods, each a bedroom, are constructed as 7.2m by 3.6m by 3.2m high volumes, the timber pillars on all four corners acting as spigots to transfer loads down the structure. Pods are connected via steel plates. Timber walls are 100mm thick while floor and ceiling elements are 120mm. Voids created where column spigots interface act as a run for drainage between floors and as air ducts between walls and were later filled with attenuating and fire-retardant insulation.

Each floor consists of 16 pods which were delivered on site with bathrooms and the glazed bedroom face already installed. These windows also act as the weather line of the tower’s double-skin ventilated facade; the outer glazing layer was added after pods were stacked in place. This structural glazing, White Arkitekter adds, also helps to stabilise the entire structure.

 

While it took a year to build the concrete sub-structure, assembling the complex’s timber structure only took another year from start to completion. Construction of the main tower was particularly fast, taking around three days per floor to hoist its 16 pods into position. Delivered to site as sealed units, interior wall finishes were left exposed; no dry lining was used in bedrooms. Each room has three sprinkler heads, giving a 90-min fire rating to the tower structure and its two escape cores, while the plinth level has a 60-min rating.

Total building cost was €105m – around €3500/m² including design – not bad for a highly serviced typology in a country with high labour costs. And while White Arkitekter concedes that concrete would have been cheaper, timber was not only more sustainable but had symbolic resonance: ‘This was a city centre with a timber heritage lost to concrete over the last century,’ says Robert Schmitz. ‘We are returning timber to it, at a new and grander scale.’  

Latest

Learn more about nurturing practice-client relationships and turning the short-term into the long-term

Learn more about nurturing practice-client relationships and turning the short-term into the long-term

Is flexible working damaging knowledge transfer? Should salaries be paid by task, not time? Is the quest for the perfect design undermining project viability? As part of the RIBA Horizons 2034 Tim Bailey offers some radical alternatives to current ways of working

Tim Bailey offers some radical alternatives to current ways of working

Scotland’s New Build Heat Standard sets the pace for zero carbon heating adoption in the UK, but what does it mean for designers and will plans for dedicated Passivhaus legislation leave the rest of us playing catch up? Stephen Cousins reports

What does Scotland’s New Build Heat Standard mean for designers and the rest of the UK?

Penn Y Common and the CAT WISE building are among Royal Society of Architects in Wales president Dan Benham’s top five Welsh buildings, which demonstrate the essential ingredients of social impact, sustainability, regeneration and home

Royal Society of Architects in Wales president on his five favourite buildings in Wales

Unknown Works’ Energy Revolution Gallery for the Science Museum encapsulates the subject matter employing low carbon construction and both reused and reusable materials

Sustainable design and build matches gallery’s energy message